
Microprocessors and Microsystems 38 (2014) 1037–1045
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Variability-tolerant routing algorithms for Networks-on-Chip
http://dx.doi.org/10.1016/j.micpro.2014.08.002
0141-9331/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: watheq.elkharashi@eng.asu.edu.eg (M.W. El-Kharashi).
Eman Kamel Gawish a, M. Watheq El-Kharashi b,⇑, M.F. Abu-Elyazeed a

a Department of Electronics and Electrical Communications Engineering, Cairo University, Giza 12613, Egypt
b Department of Computer and Systems Engineering, Ain Shams University, Cairo 11517, Egypt

a r t i c l e i n f o
Article history:
Available online 1 September 2014

Keywords:
Networks-on-Chip (NoC)
Process variations
Routing algorithms
a b s t r a c t

This paper proposes variability-tolerant routing algorithms for mesh-based Networks-on-Chip (NoC). Dif-
ferent NoC routing algorithms are modified, from variability perspective, to route flits through links with
lower failure probability. The algorithms considered in this study are XY, West-First, Negative-First, and
Odd–Even routing algorithms. To evaluate our variability-tolerant routing algorithms, a cycle-accurate
simulator, NoCTweak, is used to measure how tolerant the resultant NoCs are against process variations.
Results reflect the efficiency of our routing algorithms to overcome the process variation problems in
modern fabrication technologies. For example, variability-tolerant West-First routing algorithm achieves
up to 56% reduction in NoC overall failure rate.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Networks-on-Chip (NoC) have appeared as good alternatives to
global interconnects because of their optimized electrical proper-
ties, such as better performance in terms of power, delay,
bandwidth, and scalability, compared to buses and global intercon-
nects. Efficient NoC designs address the issues of performance,
silicon area consumption, power/energy efficiency, reliability, and
variability. These issues are the fundamental design drivers for an
efficient NoC design [1].

The inability to precisely control the manufacturing process
might result in unpredictable behavior of both device and wire,
which in turn causes performance and power variations as well
as an error-prone behavior. This becomes particularly important
for modern fabrication technologies with feature sizes smaller than
65 nm. The reasons for higher variation effects at smaller feature
sizes can be summarized as follows:

1. The process-resulting variations become comparable to the full
length or width of the device.

2. The feature size approaches the fundamental dimensions, such
as the size of atoms and the wave-length of the light, which are
used for patterning lithography masks.

Process variations mainly result from front-end and back-end
fabrication processes. The front-end fabrication processes are those
involved in the fabrication of devices, whereas back-end processes
are those involved in the fabrication of interconnects. Both the
front-end and the back-end fabrication processes can have either
random or systematic variability effects. Systematic variation
effects have spatial correlation and usually arise from lithography,
Chemical Mechanical Polishing (CMP), or etching fabrication steps.
These effects cause systematic variations in gate length, threshold
voltage, or Line Width Roughness (LWR). Random variability
effects do not have any spatial correlation and are random in
nature, like Random Dopant Fluctuation (RDF), Oxide Thickness
Fluctuation (OTF), or Line Edge Roughness (LER) [2]. As technology
scales down, identical NoC links encompass current and delay vari-
ations due to CMOS fabrication process variations causing, error at
the link receiver, which we consider a link failure [3–5].

The paths the flits are routed through on an NoC are determined
by the used routing algorithm. Different paths go through different
NoC links having different link delay variations, which results in
different link failure probabilities. In this paper, we consider the
average link failure probability that flits go through for a certain
traffic pattern as an indicator of how certain NoC routing algo-
rithms are prone to process-induced delay variations.

Routing algorithms can be classified into two types: determin-
istic and adaptive. In deterministic routing, a path is completely
determined by its source and destination addresses. On the other
hand, a routing technique is called adaptive if, given a source and
a destination addresses; the path taken by a particular flit depends
on dynamic network conditions (e.g., congested links due to traffic
variability and minimum length to destination) [6]. In this paper,
we work with one of the main deterministic routing algorithms
(ordered XY routing) and three adaptive routing algorithms

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.08.002&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.08.002
mailto:watheq.elkharashi@eng.asu.edu.eg
http://dx.doi.org/10.1016/j.micpro.2014.08.002
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


Fig. 1. XY routing from router A to router B [7].

1038 E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045
(West-First, Negative-First, and Odd–Even minimal routing). These
routing algorithms are briefed as follows:

� XY routing: XY routing is a dimension-order routing, which
routes flits first in x, or horizontal direction, to the correct col-
umn and then in y, or vertical direction, to the receiver, as
shown in Fig. 1. Addresses of the routers are their XY-coordi-
nates [7].
� West-First routing: West-First routing algorithm prevents all

turns to the west, so the flits going to the west must be first
transmitted as far to the west as necessary. Routing flits to
the west is not possible later [8]. Allowed turns in West-First
routing are shown in Fig. 2(a).
� Negative-First routing: Negative-First routing algorithm allows

all turns except turns from the positive direction to the negative
direction. Flit routing to the negative directions must be done
before anything else [9]. Allowed turns in Negative-First routing
are shown in Fig. 2(b).
� Odd–Even routing: Odd–Even routing is a deadlock-free turn

model, which prohibits turns from the east to the north and
from the east to the south at tiles located in even columns
and turns from the north to the west and the south to the west
at tiles located in odd columns [10].

In this paper, we add the link failure probability to the adaptive
conditions to be considered at routing (in addition to flit length,
buffer size, and nearer dimension output port). We use an open
source cycle accurate NoC simulator, NoCTweak [11], to simulate
different traffic patterns with modified NoC routing algorithms.

The main contributions of this work are as follows:

1. Modeling, on the system level, the NoC link failure resulting
from random and systematic process variations at certain tech-
nology node and mesh size.

2. Modifying XY, West-First, Negative-First, and Odd–Even routing
algorithms in NoCTweak to consider link failure probability
when routing, to obtain variability-tolerant routing algorithms.

3. Proposing the NoC failure rate as a measure of tolerance against
process variations under certain NoC technology node, buffer
size, injection rate, mesh size, traffic pattern, and routing
algorithm.
Fig. 2. Allowed turns in: (a) West-First routing and (b) Negative-First routing [8].
The rest of this paper is organized as follows. Related work is
discussed in Section 2. Section 3 presents our NoC failure model.
Section 4 shows the proposed variability-tolerant routing. Section 5
describes NoCTweak and analyzes the simulation results. We draw
conclusions and give ideas for future work in Section 6.
2. Related work

There have been several work in the literature addressing pro-
cess variations effects on NoC. Initially variability effects on NoC
routers were addressed [1,12,13]. As technology scales down,
interconnect delay dominates gate delay. Hence, research consid-
ered variability effects on NoC links [2–5]. Subsequently, research
aimed for fault-tolerant routing algorithms [14–23].

Nicopoulos et al. presented the first comprehensive evaluation
of NoC susceptibility to process variability effects and proposed
an array of architectural improvements in the form of a new router
design to increase resiliency to these effects [1]. By process varia-
tion exploration, Nicopoulos et al. identified the contribution of
each major router stage to the overall critical path delay. The con-
tribution to delay was used to guide the proposed modifications to
improve process variation resilience without adversely affecting
performance.

Sivaswamy and Bazargan tolerated variations by a variation-
aware router that was optimized according to statistical critical
delay path [12]. They also proposed a modification to the clock net-
work to deliver programmable skews to different flip-flops, tolerat-
ing variations within the clock paths.

Konstantinos et al. proposed a circuit-level fault modeling tool
to capture run-time process-induced random delay variations
and their corresponding system-level faults. The tool points out
to the router components that need resilient design [13].

Mehranzadeh and Hoodgar presented a fault-aware routing
algorithm scheme called FAXY based on XY routing algorithm [6].
With FAXY routing, a flit first traverses along the X direction and
then along the Y direction. When a flit traverses along the X direc-
tion and a link is masked due to a permanent fault, it traverses
along the Y direction in order to increase the overall network
throughput and prevent flit losses.

Wu et al. proposed an improved routing algorithm which toler-
ates a single link fault in 2D mesh NoC [14]. Their algorithm is
deadlock-free, yet is subject to flit loss.

Ebrahimi et al. proposed deadlock-free fully adaptive routing
algorithm using virtual channels along the X and Y directions
[15]. Ebrahimi proposed fault-tolerant routing tolerating the fault
probability resulting from random variations only. In this paper,
we propose a set of variability-tolerant routing algorithms that
consider link failure probability resulting from both systematic
and random variations.

The turn model is originated from Glass and Ni work in [16].
They introduced three adaptive routing algorithms: West-First,
North-Last, and Negative-First. These routing algorithms eliminate
deadlocks without adding virtual channels by prohibiting some
global turns. The turn model also results in routing algorithms that
are ideal for fault tolerance, live-lock free, and highly adaptive [16–
18]. Glass and Ni also proposed a turn-based fault-tolerant routing
algorithm in [17] that is based on modification of the Negative-
First routing algorithm. This algorithm can deal with any one-
faulty-router topology. In this proposal, each routing function
depends on the coordinates (Y, X) of the router, the packet destina-
tion, the input channels, and the size of the mesh.

The Position-Route method proposed in [19] is a deterministic
routing algorithm. When the destination is to the west, packets
are first sent in the west direction up to the column of the destina-
tion, and then, sent to either north or south. Otherwise, packets are



E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045 1039
first sent to either north or south up to the row of the destination,
and then, sent to east. When faulty components exist, faulty rings
are formed to surround them. Since fault rings are rectangles, some
non-faulty components may be included and are considered to be
faulty.

Dependable routing, where the routing algorithm used in every
router can dynamically detour a faulty router or a faulty link based
on local fault information, is proposed in [20]. Dependable routers
also use programmable delay elements for the matched delays,
whose delay values can be modified on power-on reset timing. This
is useful for tolerating static and/or dynamic degradation faults. C-
elements placed at the output of memory elements (e.g., flip-flops
and latches) hide transient errors resulting from noise. The pro-
posed on-chip networks contain efficient link fault detection cir-
cuits. Duplicated control circuits are also designed in order to
improve transient fault tolerance. They also studied NoC failure
rate when using XY routing in presence of injected transient faults.
Their definition of NoC failure rate depends on number of received
flits compared to some threshold at certain flit injection rate,
injected transient error rate, and NoC size. Simulation results show
that the duplication technique for control circuits improve fault
tolerance with a low performance overhead [20].

Multiple link faults are tolerated in the routing algorithms of
the multi-chip NoC platform proposed in [21]. Two routing algo-
rithms are extended to handle the inter-cluster communication
using a restricted set of links. The gateway routing that is an exten-
sion of the Glass–Ni fault tolerance routing [17] and the position
route method [19] is also extended to route flits between clusters
in the multi-chip NoC.

Sharifi and Kandemir proposed a variation-aware source rout-
ing algorithm for a heterogeneous NoC, where each router has a
different operating latency, as a result of random process varia-
tions [23]. Their routing scheme computed the best path for each
communication between a sender and a receiver, based on the
inherent speed of the routers (dictated by process variations) and
the current traffic pattern. The proposed variations-aware routing
algorithm considered delay variations of the routers, but as tech-
nology scales down interconnect delay has proven to dominate
gate delay. Hence, our variability-tolerant routing in this paper
focuses on variability effects on NoC links.

Sarangi et al. modeled the effects of random and systematic
processes on the probability of error for a microprocessor, mainly
measuring variability in logic and SRAM components [24]. Their
model provided the failure rates of micro architectural blocks, as
a function of frequency, and the amount of variations. While
Sarangi et al. consider only systematic and random variations
resulting from front-end fabrication processes to get the
normalized gate delay, in this paper we consider systematic and
random variations resulting from both the front-end and the
back-end fabrication processes to get the total interconnect delay
variations [3].

Our work in [3] modeled systematic and random geometry vari-
ations of devices and interconnects. Using geometry variations, we
calculated systematic (spatial) and random variations of the inter-
connect delay. We showed that process variations caused each link
in NoC floor-plan to have different delay depending on its position
on the die.

In this paper we estimate a process variation-induced link fail-
ure probability of each link in a mesh NoC. Then, we use the link
failure probability to route flits to the links with lower probability
of failure by introducing variability-tolerant routing algorithms.
We modify four routing algorithms XY routing, West-First minimal
routing, Negative-First minimal routing, and Odd–Even minimal
routing. We simulate NoC failure rate with different traffic patterns
like bit reversal (bitr), bit complement (bitc), regional, neighbor,
tornado, transpose, random, and hotspot [25].
3. System level model of NoC failure

Our work in [3] shows how each link across NoC encompasses
random and systematic delay variations. Link delays and their vio-
lations from timing constraints are used in this paper to estimate a
probability of failure for each link across the NoC. Averaging the
accumulated failure probabilities for all the links in NoC gives an
indicator of the probability of link failure across NoC. Finally, sim-
ulating an NoC with different traffic patterns, routing algorithms,
and mesh sizes at different technology nodes estimates the overall
NoC failure rate.

3.1. NoC link failure probability

By link failure probability, we mean the probability of the link
to fail to meet the design timing constraints resulting in failure
or error at the receiver. The link failure probability is described by

PeðlinkÞ ¼ PðTlink > TnominalÞ ð1Þ

where PeðlinkÞ is the link failure probability, Tlink is the link delay, and
Tnominal is the link nominal delay that meets the delay constraints.

In case of using the statistical link design in [3], there is still a
link failure probability defined as the probability the link delay
fails to meet the delay constraints, in spite of using the statistical
delay guard. That is:

PeðlinkÞ ¼ PðTlink > ðTnominal þ rTdtotalÞÞ ð2Þ

where rTdtotal is the total delay deviation due to process variability,
which is used as statistical delay guard/margin in variability-toler-
ant NoC link design [3].

We define the NoC average link failure probability PeðNoCÞ, as the
sum of link failure probabilities across the NoC links divided by the
number of links (nlinks).

PeðNoCÞ ¼
P

PeðlinkÞ

nlinks
ð3Þ
3.2. NoC case study

The case study below describes how the proposed model in [3]
is developed to estimate the failure probability for each link across
an NoC.

A number of samples (nsamples ¼ 1000) of NoCs are generated,
where each sample represents a different die with different vari-
ability-induced random and spatial variations. The statistical fail-
ure probability of each link in NoC is evaluated. A case study for
4 � 4 mesh at 65 nm is shown in Fig. 3. The link failure probability
is calculated by summing the number of times an NoC link in a
floor-plan fails to meet the delay constraints due to the systematic
(spatial) process variations at its position on the die, within nsamples,
and dividing by the number of samples nsamples. The link failure
probabilities across the NoC for the case study in Fig. 3 range from
1.6% to 3.4%. Summing the individual link failure probabilities and
dividing by the number of links in NoC (nlinks), the average NoC link
failure probability is 2.37% for this case study.

We estimate the average link failure probability as the supply
voltage VDD scales from 2.0 V to 0.6 V, as shown in Fig. 4. We note
that, as technology scales down from 65 nm to 22 nm, the link fail-
ure probability increases. It can also be seen that, as the supply
voltage decreases, the variations in threshold voltage, for example,
are more pronounced, hence more links fail to meet the design
timing constraints and the average NoC link failure probability
increases. This agrees with the results in [24], where the error rate
resulting from process variations in logic increases as the supply
voltage decreases.



3.1 2 2.3

3.1

3.4

2.8 2.2

1.7

2.3

2.1

2.7

2.1

3.4

2.1

1.9

2.6

1.7

1.6

2.9

2.5

2.2

2.4

3.4

1.8

Fig. 3. NoC link failure probability percentage across a case study of 4 � 4 NoC
mesh at 65 nm.

0.6 0.7 0.8 0.9 1 1.1 1.3 1.5
1.5

2

2.5

3

3.5

4

4.5

Fa
ilu

re
 ra

te
 %

Supply voltage VDD (Volt)

65 nm
45 nm
32 nm
22 nm

Fig. 4. Average NoC link failure rate versus supply voltage.

1040 E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045
4. Variability-tolerant routing

We modify NoC routing algorithms to consider link failure
probability when routing flits to their destinations. We work with
four routing algorithms XY, West-First, Negative-First, and Odd–
Even routing. The routing modifications are discussed in this
section.
4.1. Variability-tolerant XY routing

The XY routing algorithm is modified to consider link failure
probability when routing is to be in the X direction (to the east
or to the west) by checking the link failure probability in the Y
direction of the destination and routing to it, if having lower
failure probability. On the other hand, if routing is to be in the Y
direction, it does not consider link failure probability, as shown
in Algorithm 1.
Algorithm 1. Variability-tolerant XY routing.

1: INPUTS: local x, y coordinates of the router:
local x; local y,

2: Destination router: x, y coordinates: dst x; dst y,
3: Probabilities of link failure in x direction:

p x east; p x west,
4: Probabilities of link failure in y direction:

p y north; p y south.
5: OUTPUTS: a direction to route flits: LOCAL, EAST, WEST,

NORTH, and SOUTH.
6: if dst x ¼¼_local_x then . routing in Y direction is free
7: if dst y ¼¼_local_y then return LOCAL;
8: else if dst y < local y then return NORTH;
9: else return SOUTH;
10: end if
11: else if dst x < local x then
12: . routing in X direction considers link failure

probability
13: if dst y ¼¼_local_y then return WEST
14: . routing in the same row is free
15: else if dst y < local y then
16: . if destination is up before routing to west,
17: . compare p x west to p y north.
18: if p x west < p y north then return WEST;
19: else return NORTH;
20: . route to the direction with lower failure

probability
21: end if
22: else
23: . if destination is down before routing,
24: . compare p_x_west to p_y_south
25: if p x west < p y south then return WEST;
26: else return SOUTH;
27: end if
28: end if
29: else . routing to the EAST considers link failure

probability
30: if dst y ¼¼_local_y then return EAST;
31: . routing in the same row is free
32: else if dst y < local y then
33: . if destination is up before routing to west,
34: . compare p_x_east to p_y_north.
35: if p x east < p y north then return EAST;
36: else return NORTH;
37: . route in the direction with lower link failure

probability
38: end if
39: else
40: . if destination is down before routing,
41: . compare p_x_east to p_y_south
42: if p x east < p y south then return EAST;
43: else return SOUTH;
44: . route to the direction with lower failure

probability
45: end if
46: end if
47: end if
4.2. Variability-tolerant West-First routing

The adaptive West-First routing is modified to consider link fail-
ure probability when routing is to be in the east direction by con-



E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045 1041
sidering the link failure probability in the Y direction of the desti-
nation and routing to it, if it has lower failure probability. While
routing in the Y or west directions are free and do not consider link
failure probability, as shown in Algorithm 2.

Algorithm 2. Variability-tolerant West-First routing.

1: INPUTS: local x, y coordinates of the router:
local x; local y,

2: Destination router: x, y coordinates: dst x; dst y,
3: Probabilities of link failure in x direction:

p x east; p x west,
4: Probabilities of link failure in y direction:

p y north; p y south,
5: Adaptive routing conditions flag: ARC.
6: OUTPUTS: a direction to route flits: LOCAL, EAST, WEST,

NORTH, and SOUTH.
7: if dst x ¼¼_local_x then . routing in Y direction is free
8: if dst y ¼¼_local_y then return LOCAL;
9: else if dst y < local y then return NORTH;
10: else return SOUTH;
11: end if
12: else if dst x < local x return WEST;
13: . routing to the west is free
14: else . routing to the EAST considers link failure

probability
15: if dst y ¼¼_local_y then return EAST;
16: . routing in the same row is free
17: else if dst y < local y then
18: . if destination is up, consider link failure

probability
19: if ARC and ðp x east < p y northÞ then return EAST;
20: else return NORTH;
21: end if
22: else . if destination is down, consider link failure

probability
23: if ARC and ðp x east < p y southÞ then return EAST;
24: else return SOUTH;
25: end if
26: end if
27: end if

Since we still prohibit routing to forbidden turns, variability-
tolerant West-First routing is assumed to also be deadlock-free
as West-First routing.
4.3. Variability-tolerant Negative-First routing

The adaptive Negative-First routing is modified to consider link
failure probability when the routing is to route the flit to west or to
the east direction, by adding link failure probability to the adaptive
routing conditions, as shown in Algorithm 3.

Algorithm 3. Variability-tolerant Negative-First routing.

1: INPUTS: local x, y coordinates of the router
local x; local y,

2: Destination router: x, y coordinates: dst x; dst y,
3: Probabilities of link failure in x direction:

p x east; p x west,
4: Probabilities of link failure in y direction:

p y north; p y south,
5: Adaptive routing conditions flag: ARC.
6: OUTPUTS: a direction to route flits: LOCAL, EAST, WEST,

NORTH, and SOUTH.
7: if dst x ¼¼_local_x then . routing in Y direction is free
8: if dst y ¼¼_local_y then return LOCAL;
9: else if dst y < local y then return NORTH;
10: else return SOUTH;
11: end if
12: else if dst x > local x then
13: . routing to the EAST considers link failure

probability
14: if dst y ¼¼_local_y then return EAST;
15: . routing in the same row is free
16: else if dst y < local y then
17: . if destination is up considers link failure

probability
18: if ARC and ðp x east < p y northÞ then return EAST;
19: else return NORTH;
20: end if
21: end if
22: else . routing to the WEST considers link failure

probability
23: if dst y ¼¼_local_y then return WEST;
24: . routing in the same row is free
25: else if dst y > local y then
26: . if destination is down consider link failure

probability
27: if ARC and ðp x west < p y southÞ then return WEST;
28: else return SOUTH;
29: end if
30: end if
31: end if

Since we still prohibit routing to forbidden turns, variability-
tolerant Negative-First routing is assumed to also be deadlock-free
as Negative-First routing.
4.4. Variability-tolerant Odd–Even routing

The Odd–Even routing is modified to consider link failure prob-
ability when routing is to be in the even column to the west direc-
tion, as shown in Algorithm 4.

Algorithm 4. Variability-tolerant Odd–Even routing.

1: INPUTS: local x, y coordinates of the router
local x; local y,

2: Destination router: x, y coordinates: dst x; dst y,
3: Probabilities of link failure in x direction:

p x east; p x west,
4: Probabilities of link failure in y direction:

p y north; p y south.
5: OUTPUTS: a direction to route flits: LOCAL, EAST, WEST,

NORTH, and SOUTH.
6: dist x ¼ dst x� local x; . distance from local to

destination
7: dist y ¼ dst y� local y;
8: if dst x ¼¼_local_x then . routing in Y direction is free
9: if dst y ¼¼_local_y then return LOCAL;
10: else if dst y < local y then return NORTH;
11: else return SOUTH;

(continued on next page)



1042 E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045
12: end if
13: else if dist x > 0 then
14: . routing to the EAST considers link failure

probability
15: if dist y == 0 then return EAST;
16: . routing in the same row is free
17: else if ð local x MOD 2Þ then . odd column routing is

free;
18: if dist y > 0 then return NORTH; . destination is

up
19: else return SOUTH;
20: end if
21: end if
22: else . routing to the WEST considers link failure

probability
23: if dist y == 0 then return WEST;
24: . routing in the same row is free
25: else if not ð local x MOD 2Þ then
26: . even column routing considers link failure

probability
27: if ðdist y > 0Þ and ðp y south < p y northÞ then
28: return SOUTH;
29: else return NORTH;
30: end if
31: end if
32: end if

Since we still prohibit routing to forbidden turns, variability-
tolerant Odd–Even routing is assumed to also be deadlock-free as
Odd–Even routing.
5. Simulation results

We perform simulation for variability-tolerant routing algo-
rithms at different technology nodes, mesh sizes, injection rates,
buffer sizes, and traffic patterns, like bitr, bitc, regional, neighbor,
tornado, transpose, random, and hotspot. Our purpose is to indi-
cate how NoC performance is affected by link failure resulting from
process variations under different routing algorithms, traffic pat-
terns, etc.

5.1. NoCTweak

NoCTweak is a highly parameterizable, cycle-accurate, open
source simulator for early exploration of performance and energy
Fig. 5. NoCTweak platfor
of NoC [11]. The simulator has been developed using SystemC,
which allows fast modeling of concurrent hardware modules at
the cycle-level accuracy. NoCTweak Version 1.0 platform is used,
which simulates a 2D mesh NoC connecting multiple cores. Each
NoC node consists of a processor (core and network interface)
and an associated router. Each router has four buffered inputs
ports, four buffer-less output ports, control logic, and crossbar
switch, as shown in Fig. 5. Each processor core generates data flits
and injects them into NoC through its router. Flits are routed on the
NoC by a selected routing algorithm to their destinations at which
the flits are immediately consumed.

NoCTweak configurable parameters include mesh size, buffer
size, input voltage, link length, technology node, input traffic pat-
tern, random seed, injection rate, and routing algorithm. The out-
puts of NoCTweak include average latency, average throughput,
received flits, and average power consumption. Among all existing
NoC simulators we found NoCTweak to be the only simulator that
considers delay and power for technology nodes.

NoCTweak open source library uses 65 nm technology node. We
perform scaling for delay and power at other technology nodes.
Scaling is mainly done by scaling supply voltage and link length
for different technology nodes by the factor S, where S is the ratio
between the scaled technology node and the 65 nm node size.

The link failure probability of each link is input to NoCTweak.
So, at each routing decision, the probability of link failure in the
X direction (east and west) and the Y direction (north and south)
are extracted based on the router position (XY coordinate). We
then modified XY, West-First, Negative-First, and Odd–Even rout-
ing algorithms in NoCTweak to consider link failure probability
when routing to be variability-tolerant routing algorithms.

5.2. Simulating NoC failure rate

Link failure probabilities are used by the methods we developed
and embedded within NoCTweak to measure the overall NoC fail-
ure rate as an indicator of NoC tolerance to link failure induced by
process variability random and systematic effects.

At the start of each simulation, the link failure probabilities of
all NoC links are read from input file and mapped into NoCTweak.
(This can be implemented in hardware by a simple register carry-
ing lookup table of the link failure probabilities at each router.)
Then, NoCTweak calculates NoC failure rate as the accumulated
link failure probabilities of all the links that flits are routed through
within NoCTweak number of simulations for certain input traffic
pattern, injection rate, buffer size, mesh size, clock frequency, tech-
nology node, routing protocol, and throughput, divided by the total
number of hops within the simulations. This comes in analogy with
m for 2D mesh [11].



Table 1
NoC failure rates at different mesh sizes.

Mesh
size

Latency
(cycles)

Throughput
(flits/cycle)

Failure rate
(%)

Link
power

8 � 8 30.868 0.050 1.561 1.110
10 � 10 36.795 0.050 2.020 1.359
12 � 12 42.160 0.050 2.241 1.583
16 � 16 53.127 0.050 5.303 2.035

0.05 0.1 0.2
0

0.5

1

1.5

2

2.5

3

Fa
ilu

re
 ra

te
 %

Injection rate (flit/cycle)

Random
Hot Spot Central
Hot Spot Corner
Regional
Transpose
Neighbour
Tornado
BitC
BitR

Fig. 7. NoC failure rate for variability-tolerant West-First routing at different
injection rates.

E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045 1043
the link fault probability by Konstantinos et al. [13], defined for
each critical path as the fraction of timing violations over the total
number of simulations. The NoC failure rate can be defined as:

NoC failure rate ¼ 100�
Prouteslink failure probability

nroutes � nsamples

� flit injection rate
throughput

ð4Þ

where
P

link failure probability is the sum of link failure probabil-
ities via all the links the flits are routed through in an NoCTweak
simulation for a certain input traffic pattern, nroutes is the total num-
ber of hops of all flits within an NoCTweak simulation, nsamples is the
total number of samples (1000) generated to estimate the link fail-
ure probability due to process variability, flit injection rate is the
number of flits injected to the NoC per cycle, and throughput is
the number of flits output from the NoC per cycle.

We simulated NoC failure rate for different mesh sizes at 45 nm
for random uniform traffic using the original West-First routing
with injection rate 0.05, buffer size of 16, and 2 GHz clock. Results
are shown in Table 1.

It is shown in Table 1 that increasing the mesh size causes NoC
to have higher NoC failure rates. This agrees with our work in [4],
where the amount of delay variations increases as the mesh size
increases. Additionally, larger mesh sizes encompass more spatial
variations, and hence more links fail to meet the timing con-
straints. Larger size meshes mean more links, hence more average
link power, and longer latency. The simulated NoC failure rate rep-
resents an indicator of how an NoC is tolerant to link failure result-
ing from process systematic and random variations.

5.3. Routing protocol comparison

Failure rates of XY, West-First, Negative-First, and Odd–Even
routing algorithms before and after modifications to tolerate pro-
cess variations, for an 8 � 8 mesh with random uniform input traf-
XY West−First Negative−First Odd−Even
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fa
ilu

re
 ra

te
 %

Routing algorithm

Original routing algorithms
Variability−tolerant routing algorithms

Fig. 6. NoC failure rate for different routing algorithms before and after routing
modifications to tolerate process variations.
fic, injection rate 0.1, and buffer size 16 at 45 nm are shown in
Fig. 6. From the figure, it can be noted that:

� Variability-tolerant routing algorithms have lower NoC failure
rate, than their counterpart routing algorithms, as long as the
NoC is not saturated.
� In the case of Odd–Even routing, congestion partially occurs

causing NoC failure rate to increase. The injection rate needs
to be decreased or buffer size needs to be increased to eliminate
the partial congestion of the traffic in the NoC.
� It can also be noted that, for this case study, West-First variabil-

ity-tolerant routing minimizes its NoC failure rate by 56% com-
pared to West-First routing. While XY variability-tolerant
routing minimizes its NoC failure rate only by 3% compared to
XY routing. As West-First routing shows the best tolerance to
process variability among the routing algorithms in this case
study, we focus on it for the rest of this paper.

5.4. Injection rate analysis

To make sure we study the NoC failure rate under deadlock-free
network conditions, we work with non-saturated traffic conditions,
8 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fa
ilu

re
 ra

te
 %

Buffer size (bits)

Random
Hot Spot Central
Hot Spot Corner
Regional
Transpose
Neighbour
Tornado
BitC
BitR

Fig. 8. NoC failure rate for variability-tolerant West-First routing at different buffer
sizes.



8x8 10x10 12x12 16x16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fa
ilu

re
 ra

te
 %

Mesh size

Random
Hot Spot Central
Hot Spot Crner
Regional
Transpose
Neighbour
Tornado

Fig. 9. NoC failure rates for variability-tolerant West-First routing at different mesh
sizes.

65 nm 45 nm 32 nm 22 nm 
0

0.5

1

1.5

2

2.5

3

3.5

4

Fa
ilu

re
 ra

te
 %

Technology node

West−First
Variability−tolerant West−First

Fig. 10. NoC failure rates for West-First routing at different technology nodes.

65 nm 45 nm 32 nm 22 nm 
0

0.5

1

1.5

2

2.5

3

3.5

4

Fa
ilu

re
 ra

te
 %

Technology node

XY
Variability−tolerant XY

Fig. 11. NoC failure rates for XY routing at different technology nodes.

1044 E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045
i.e., throughput equals to the injection rate. In case of partial con-
gestion (throughput < flit injection rate), the NoC failure rate will
be increased. In case of a complete congestion (throughput ¼ 0),
the NoC failure rate will go to /, which is an indicator of complete
NoC failure.

We simulate NoC failure rate for different traffic patterns at
injection rates lower than 0.2 flit/cycles (after which an 8x8 NoC
at 45 nm with 2 GHz clock and 16 bits buffer size starts to satu-
rate), with West-First variability-tolerant routing to evaluate the
effects of increasing injection rate on NoC failure rate. As shown
in Fig. 7, increasing the flit injection rates increases the NoC failure
rates. Higher injection rates mean more traffic, more routes taken
and hence larger probability of failure. It can also be noticed that,
different traffic patterns leads to different NoC failure rates. Traffic
patterns like bitc and tornado have the highest failure rate, while
traffic patterns like neighbor and regional have the lowest failure
rate.

5.5. Buffer size analysis

Simulating the 8 � 8 meshes NoC with variability-tolerant
West-First routing at 45 nm with 0.1 injection rate and 2 GHz clock
versus different buffer size is shown in Fig. 8. It is shown that
increasing the buffer size decreases the NoC failure rate for some
traffic patterns like tornado and bitc, which cross large distances
across the NoC.

5.6. Mesh size scaling

We also simulated NoC failure rate for different mesh sizes at
45 nm with injection rate 0.05, buffer size 16, and 2 GHz clock at
different traffic patterns using West-First variability-tolerant rout-
ing. Results are shown in Fig. 9. As shown in Fig. 9, the NoC failure
rates increase as the mesh size increases. It can be noted that, dif-
ferent traffic patterns have different NoC failure rates. This agrees
with the fact that different traffic patterns take different routes,
hence go through different link failure probabilities. For the case
in Fig. 9, the traffic patterns tornado has the highest failure rate,
while the traffic pattern neighbor has the lowest NoC failure rate.

5.7. Technology node analysis

We performed NoCTweak simulation for 4 � 4 mesh with West-
First variability-tolerant routing for random traffic, with buffer size
16 and injection rate 0.1 at 65 nm, 45 nm, 32 nm, and 22 nm tech-
nology nodes.

As shown in Fig. 10, as technology scales down from 65 nm to
22 nm, the NoC failure rate increases by 34%. It is also shown that,
variability-tolerant West-First routing achieves lower NoC failure
rates as compared to the original West-First routing at different
technology nodes.

We also performed an NoCTweak simulation for 4 � 4 mesh
with XY variability-tolerant routing for random traffic, with buffer
size 16 and 0.1 injection rate at 65 nm, 45 nm, 32 nm, and 22 nm
technology nodes. The estimated NoC failure rates are shown in
Fig. 11. It can be note that modifying XY routing to be variabil-
ity-tolerant decreases the NoC failure rates. This comes in accor-
dance with the fact that, variability-tolerant routing selects the
link with lower failure probability.
6. Conclusion and future work

This paper presented an NoC link failure system-level model for
timing violations resulting from process variations. Variability-tol-
erant XY, West-First, Negative-First, and Odd–Even routing algo-
rithms were also proposed in this paper, where flits are routed to



E.K. Gawish et al. / Microprocessors and Microsystems 38 (2014) 1037–1045 1045
links with lower failure probability in order to tolerate process
variations.

Results show that variability-tolerant West-First routing
achieves around 56% reduction in the overall NoC failure rate,
while XY variability-tolerant routing minimizes its NoC failure rate
by only 3%, for the case study of an 8 � 8 mesh with random uni-
form input traffic, injection rate 0.1, and buffer size 16 at 45 nm.
We also note that, NoC failure rate increases with the increase in
mesh size and injection rate or decrease in buffer size. As technol-
ogy scales down, the amount of process variations increases, caus-
ing NoC failure rate to increase as well. Additionally, we have seen
that, different traffic patterns have different NoC failure rates. This
agrees with the fact that different traffic patterns take different
routes hence go through different link failure probabilities. The
traffic pattern tornado has the highest failure rate, whereas the
traffic pattern neighbor has the lowest NoC failure rate.

The proposed variability-tolerant routing used static values for
link failure probability, while adaptive routing algorithms, like
Odd–Even routing, consider mainly dynamic network conditions.
As a future work, run-time temperature/supply-voltage variations
can be input to our link failure model. Changing the temperature or
supply-voltage will change the amount of variations, and hence
will change the link failure probability, which in turn will change
dynamically the routing of flits through the NoC.

References

[1] C. Nicopoulos, V. Narayanan, C.R. Das, Network-on-Chip Architectures: A
Holistic Design Exploration, Springer, Philadelphia, PA, USA, 2009.

[2] M. Orshansky, R. Nassif, D. Boning, Design for Manufacturability and Statistical
Design, Springer, Philadelphia, PA, USA, 2008.

[3] E.K. Gawish, M.W. El-Kharashi, M.F. Abu-Elyazeed, Variability-tolerant NoC
link design, in: Proceedings of the Fifth International Workshop on Network on
Chip Architectures (NoCArc’2012), held in conjunction with the 45th Annual
IEEE/ACM International Symposium on Microarcchitectures. Vancouver, BC,
Canada, 2012, pp. 57–62.

[4] E.K. Gawish, M.W. El-Kharashi, M.F. Abu-Elyazeed, Variability-aware NoC
geometry and topology scaling, in: Proceedings of the 2nd Saudi International
Electronics, Communications and Photonics Conference (SIECPC’13), Riyadh,
Saudi Arabia, 2013.

[5] E.K. Gawish, M.W. El-Kharashi, M.F. AbuElYazeed, Variability-tolerant current-
mode link design for NoC, in: Proceedings of the 2013 IEEE Pacific Rim
Conference on Communications, Computers, and Signal Processing (PacRim),
Victoria, BC, Canada, 2013, pp. 131–136.

[6] A. Mehranzadeh, M. Hoodgar, FAXY: fault aware routing algorithm based on
XY algorithm for network on chip, Glob. J. Comput. Sci. Technol. 11 (17) (2011)
58–62.

[7] M. Dehyadgari, M. Nickray, A. Afzali-kusha, Z. Navabi, Evaluation of pseudo
adaptive XY routing using an object oriented model for NoC, in: Proceedings of
17th International Conference on Microelectronics, Islamabad, Pakistan, 2005,
p. 5.

[8] V. Rantala, T. Lehtone, J. Plosila, Network on Chip Routing Algorithms. Tech.
Rep.; TUCS: Turku Center for Computer Science, Turku, Finland, 2006.

[9] H. Kariniemi, J. Nurmi, Arbitration and Routing Schemes for On-chip Packet
Networks, Interconnect-Centric Design for Advanced SoC and NoC, Kluwer
Academic Publishers, Norwell, MA, USA, 2004.

[10] J. Hu, R. Marculescu, DyAD: smart routing for networks-on-chip, in:
Proceedings of the 41st Design Automation Conference, San Diego, CA, USA,
2004, pp. 260–263.

[11] A. Tran, B. Baas, NoCTweak: A Highly Parameterizable Simulator for Early
Exploration of Performance and Energy of Networks on-chip, Tech. Rep.; VCL
Lab, ECE Department, UC Davis, Davis, CA, USA, 2012.

[12] S. Sivaswamy, K. Bazargan, Statistical analysis and process variation-aware
routing and skew assignment for FPGAs, in: ACM Transactions on
Reconfigurable Technology and Systems TRETS – Special edition on the 15th
International Symposium on FPGAs, vol. 1(1), 2008, pp. 58–62.

[13] A. Konstantinos, C. Chen, J. Plosila, L. Peh, Enabling system level modeling of
variation induced faults in networks on chips, in: Proceedings of the Design
Automation Conference DAC, New York, USA, 2011, pp. 930–935.

[14] J. Wu, Z. Zhang, C. Myers, A fault-tolerant routing algorithm for a network-on-
chip using a link fault model, in: Proceedings of the Virtual Worldwide Forum
on Electronic Design Automation VW-FEDA, Southampton, UK, 2011.

[15] M. Ebrahimi, M. Daneshtalab, J. Plosila, F. Mehdipour, MD: minimal path-based
fault-tolerant routing in on-chip networks, in: Proceedings of the Design
Automation Conference ASP-DAC 2013, Yokohama, Japan, 2013, pp. 35–40.

[16] C.J. Glass, L.M. Ni, The turn model for adaptive routing, in: Proceedings of the
19th Annual International Symposium on Computer Architecture, Gold Coast,
Australia, 1992, pp. 278–287.
[17] C.J. Glass, L.M. Ni, Fault-tolerant wormhole routing in meshes, in: Proceedings
of the Twenty-Third International Symposium on Fault-Tolerant Computing
FTCS-23, Toulouse, France, 1993, pp. 240–249.

[18] Z. Zhang, A. Greiner, S. Taktak, A reconfigurable routing algorithm for a fault-
tolerant 2D-mesh network-on-chip, in: Proceedings of the Design Automation
Confrence DAC 2008, Anheim, CA, USA, 2008, pp. 441–446.

[19] Y. Fukushima, M. Fukushi, I.E. Yairi, T. Hattori, A hardware oriented fault-
tolerant routing algorithm for irregular 2D-mesh network on-chip without
virtual channels, in: Proceedings of the 25th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems DFT 2010, Koyoto, Japan, 2010, pp.
52–59.

[20] T. Yoneda, M. Imai, Improving dependability and performance of fully
asynchronous on-chip networks, in: Proceedings of the 2011 IEEE
International Symposium on Asynchronous Circuits and Systems ASYNC,
Ithaca, NY, USA, 2011, pp. 65–76.

[21] T. Yoneda, M. Imai, Dependable routing in multi-chip NoC platforms for
automotive applications, in: Proceedings of the 2012 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
systems DFT, Austin, TX, USA, 2012, pp. 217–224.

[22] T. Yoneda, M. Imai, Fault diagnosis and reconfiguration method for network-
on-chip based multiple processor systems with restricted private memories,
IEICE Trans. Inform. Syst. E97-D (9) (2013) 1914–1925.

[23] A. Sharifi, M. Kandemir, Process variation-aware routing in NoC based
multicores, in: Proceedings of the Design Automation Conference DAC, New
York, USA, 2011, pp. 924–929.

[24] S.R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, J. Torrellas,
VARIUS: a model of process variation and resulting timing errors for
microarchitects, IEEE Trans. Semicond. Manuf. 21 (1) (2008) 3–13.

[25] W.J. Dally, B. Towles, Principles and Practices of Interconnection Networks,
Morgan Kaufmann, San Francisco, CA, USA, 2004.

Eman Kamel Gawish received the Ph.D. and the M.Sc.
degrees in Electronics and Electrical Communications
Engineering from Cairo University, Giza, Egypt, in 2013
and 2005, respectively. She got the B.Sc. degree in
Electronics and Electrical Communication Engineering
from Ain Shams University, Cairo, Egypt in 2000. Cur-
rently, she is a general manager in Telecom Egypt. Her
general research interests are in advanced system
architectures, especially networks-on-chip (NoC), VLSI
design, fabrication process variability, CAD tools,
modelling and simulation. She is also interested in
communication broadband, 3G, and VoIP technologies.
M. Watheq El-Kharashi received the Ph.D. degree in
computer engineering from the University of Victoria,
Victoria, BC, Canada, in 2002, and the B.Sc. degree (first
class honors) and the M.Sc. degree in computer engi-
neering from Ain Shams University, Cairo, Egypt, in
1992 and 1996, respectively. He is currently a Professor
in the Department of Computer and Systems Engineer-
ing, Ain Shams University, Cairo, Egypt and an Adjunct
Associate Professor in the Department of Electrical and
Computer Engineering, University of Victoria, Victoria,
BC. His research interests include advanced micropro-
cessor design, simulation, performance evaluation, and

testability, system-on-chip (SoC), networks-on-chip (NoC), computer architecture
and computer networks education, secure hardware. He published about 100
papers in refereed international journals and conferences and authored two books

and 6 book chapters.

M.F. Abu-Elyazeed was born in Cairo, Egypt on
February 1959. He received the B.Sc. degree (first class
honors) from Cairo University, Cairo, Egypt in 1982. He
also received the M.Sc. and Ph.D. degrees in Electrical
Engineering from Cairo University in 1986 and 1990,
respectively. From 1984 to 1993, he was a research
assistant and an instructor at the Electronics and
Electrical Communications Engineering Department,
Cairo University. From 1994 to 1999, he was an assis-
tant Professor at the Physics Department, Emirates
University, UAE. He is presently a Professor at the
Electronics and Electrical Communications Engineering,

Cairo University. His research interests are in the areas of digital signal processing,
circuits simulation, and fault diagnosis.

http://refhub.elsevier.com/S0141-9331(14)00126-4/h0005
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0005
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0005
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0010
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0010
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0010
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0030
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0030
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0030
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0045
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0045
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0045
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0045
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0110
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0110
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0110
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0120
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0120
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0120
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0125
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0125
http://refhub.elsevier.com/S0141-9331(14)00126-4/h0125

	Variability-tolerant routing algorithms for Networks-on-Chip
	1 Introduction
	2 Related work
	3 System level model of NoC failure
	3.1 NoC link failure probability
	3.2 NoC case study

	4 Variability-tolerant routing
	4.1 Variability-tolerant XY routing
	4.2 Variability-tolerant West-First routing
	4.3 Variability-tolerant Negative-First routing
	4.4 Variability-tolerant Odd–Even routing

	5 Simulation results
	5.1 NoCTweak
	5.2 Simulating NoC failure rate
	5.3 Routing protocol comparison
	5.4 Injection rate analysis
	5.5 Buffer size analysis
	5.6 Mesh size scaling
	5.7 Technology node analysis

	6 Conclusion and future work
	References


